First/Second Semester B.E. Degree Examination, Jan./Feb. 2021 **Elements of Civil Engineering and Mechanics**

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. Missing data, if any, may be suitably assumed.

Module-1

1 a. Explain briefly the scope of following areas of civil engineering:

i) Irrigation engineering

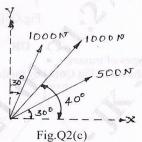
ii) Environmental engineering.

(10 Marks)

b. What are the roles of civil engineers in the infrastructural development of a country?

(10 Marks)

OR


a. State and explain basic idealization in mechanics.

(06 Marks)

b. State and prove law of parallelogram of forces.

(06 Marks)

c. Two forces acting on a body are 500N and 1000N as shown in Fig.Q2(c). Determine the third force F such that the resultant of all the three forces is 1000N, directed at 40° to the X axis.

(08 Marks)

Module-2

a. State and prove Lami's theorem.

(08 Marks)

b. Two identical cylinders, each weighing 500N are arranged in a through as shown in Fig.Q3(b). Determine the reactions developed at contact points A, B, C and D. Assume all points of contact are smooth.

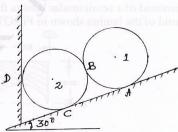


Fig.Q3(b)

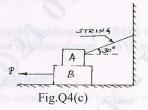
(10 Marks) (02 Marks)

c. List the equations of equilibrium.

1 of 3

Important Note: 1. On completing your answers, comp. orily draw diagonal cross lines on the remaining blank pag. . 2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be treated as malpractice.

OR


4 a. State the laws of dry friction.

(04 Marks)

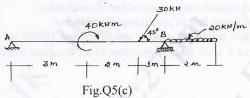
b. Explain the types of friction.

(06 Marks)

c. Find the force p just required to slide the block B in the arrangement shown in Fig.Q4(c). Find also the tension in the string. Given weight of block A = 500N and weight of block B = 1000N. $\mu = 0.2$ for all contact surfaces.

(10 Marks)

Module-3


5 a. Explain with sketches different types of loads.

(04 Marks)

b. Explain with sketches different types of supports.

(06 Marks)

c. Determine the reactions developed at supports A and B of overhanging beam shown in Fig.Q5(c).

(10 Marks)

OR

6 a. List the different types of trusses.

(06 Marks)

b. Analyse the truss shown in Fig.Q6(b) by method of joints.

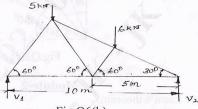
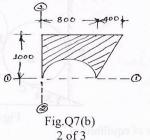


Fig.Q6(b)

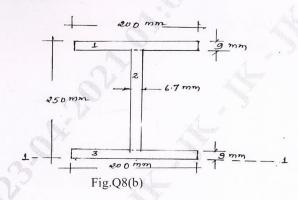

(14 Marks)

Module-4

a. Determine the centroid of a semicircular lamina from the first principle.

(08 Marks)

b. Locate the centroid of the lamina shown in Fig.Q7(b), with respect to axes 1-1 and 2-2.



(12 Marks)

8 a. State and prove parallel axes theorem.

(08 Marks)

b. Determine the moment of inertia of the symmetric I-section shown in Fig.Q8(b) about its centroidal axes x-x ad y-y.

(12 Marks)

Module-5

- 9 a. Define the following:
 - i) Projectile
 - ii) Trajectory
 - iii) Time of flight
 - iv) Range.

(08 Marks)

- b. A projectile is fired at certain angle has a horizontal range of 3.5km. If the maximum height reached is 500m, what is the angle of elevation of the cannon? What was the muzzle velocity of the projectile? (06 Marks)
- c. A Burglar's car starts with an acceleration of 2m/sec². A police van came after 10 sec and continued to chase the burglar's car with an uniform velocity of 40m/sec. find the time taken by the police van to overtake the Burglar's car. (06 Marks)

OR

10 a. State Newton's second law of motion and D'Alembert's principle.

(04 Marks

- b. A lift carries a man of weight 4000kN and is moving with a uniform acceleration of 3.5m/sec². Determine the tension in the cable when:
 - i) Lift is moving upwards
- ii) Lift is moving downwards.

(08 Marks)

- A car travelling at a speed of 75kmph applies brake and comes to a halt after skidding 60m.
 Determine:
 - i) Deceleration
 - ii) Time to stop the car
 - iii) Coefficient of friction between road and tyres.

(08 Marks)

* * * * *